

Proportional flow control valve with integrated pressure compensator Type KUDSR

RE 18702

Edition: 12.2017 Replaces: 10.2016

Features

- ▶ Mounting cavity R/UNF-16-03-0-06
- Direct operated proportional valve for controlling the flow size
- Operation by means of proportional solenoid
- Detachable and rotatable solenoid coil (connector position freely selectable)
- With concealed manual override
- Screwable manual override with star handle, optional

Size	3	
Size	З	

- Component series B
- Maximum operating pressure 350 bar
- Maximum supply flow 120 l/min

Contents

Type code	2
Preferred types	2
Available coils	3
Symbols	3
Functional description	4
Technical data	5
Characteristic curves	7
Permissible working range	9
Dimensions	10
Mounting cavity	11
Available individual components	12
Related documents	12

Type code (valve without coil)¹⁾

01	02	03	04	05		06	07	08	09
KUDS	R	3		В	/	F	N9	v	*

Туре

01 Proportional flow control valve with integrated pressure compensator, direct operated KU	UDS	
---	-----	--

R

3

Maximum operating pressure

Size

03 Size 3

Flow in port A

Component series

05	Component series B	В

Mounting cavity

06	High-Performance and mounting cavity R/UNF-16-03-0-06, see page 11	F
Manu	ual override	
07	With concealed manual override	N9
	Screwable manual override with star handle (separate order, material no. R913009058, see page 12)	N14
Seali	ing material	
08	FKM (fluoroelastomer) (other seals on request)	v

Preferred types (valve without coil)¹⁾

Туре	Material no.
KUDSR3CB/FN9V	R901480558
KUDSR3C1B/FN9V	R901480554
KUDSR3C2B/FN9V	R901480557

¹⁾ Complete valves with mounted coil on request.

Available coils (separate order)

	Material no. for coil with connector ²⁾			
	"К4"	"К40"	"C4"	
	03pol (2+PE)	02pol K40	02pol C4/Z30	
Direct voltage DC ³⁾	DIN EN 175301-803	DT 04-2PA, co. Deutsch	AMP Junior-Timer	
12 V (1.8 A)	R901022180	R901272648	R901022680	
24 V (1.2 A)	R901022174	R901272647	R901022683	

Symbols

- **P** = Pump port
- **T** = Tank port
- **A** = Control pressure port

²⁾ Plug-in connectors separate order, see data sheet 08006.

³⁾ Other voltages upon request.

Functional description

General

The proportional flow control valve is a direct operated screw-in cartridge valve in spool design with integrated pressure compensator. It regulates the flow proportionally to the input signal in a stepless form from port **P** to **A**. Any excessive residual flow is led to the tank or to another actuator via port **T**.

The valve basically consists of housing, control spool, control spring, pressure compensator spool, orifice bush, pressure compensator spring as well as proportional solenoid (1) with central thread and detachable coil.

Function (2-way)

With de-energized proportional solenoid (1), the control spool that is always pressure-compensated to the actuating forces due to its structural design is held in the initial position by the control spring and blocks the flow between port **P** and **A**. By energizing the proportional solenoid (1), the control spool is adjusted directly proportional to the electrical input signal and, via orifice-type cross-sections (with progressive flow characteristics), adjusts and connects the ports **P** and **A**. Due to the integrated pressure compensator spool together with the pressure compensator spring, the pressure drop across the valve is kept constant, independent of the pressures at **P** and **A**. In case of de-excitation of the proportional solenoid (1), the control

▼ Type KUDSR3...

spring returns the control spool into its initial position. The entire flow must bedissipated via the upstream system pressure relief valve.

The manual override (2) allows for the adjustment of the valve without solenoid energization.

Function (3-way)

With de-energized proportional solenoid (1), the control spool that is always pressure-compensated to the actuating forces due to its structural design is held in the initial position by the control spring and blocks the flow between port **P** and **A**. By energizing the proportional solenoid (**1**), the control spool is adjusted directly proportional to the electrical input signal and, via orifice-type cross-sections (with progressive flow characteristics), adjusts and connects the ports **P** and **A**. Due to the integrated pressure compensator spool together with the pressure compensator spring, the pressure drop across the valve is kept constant, independent of the pressures at **P**, **T** and **A**. In case of excessive flow from P, the pressure compensator spool moves to the right and opens the connection **P** to **T**. In case of de-excitation of the proportional solenoid (1), the control spring returns the control spool into its initial position. The entire flow is now directly led from port **P** to port **T**. The manual override (2) allows for the adjustment of the valve without solenoid energization.

- 1 Proportional solenoid
- 2 Manual override

Technical data

General		
Weight	kg	0.97
Installation position		Any – if it is ensured that no air can collect upstream of the valve. Otherwise, we recommend suspended installation of the valve.
Ambient temperature range	°C	See characteristic curve on page 9
Storage temperature range	°C	-20 to +80
Environmental audits		
Salt spray test according to DIN 50021	h	720
Surface protection DC solenoids		Coating according to DIN 50962-Fe//ZnNi with thick film passivatior

Hydraulic			
Maximum operating pressure	Port P	bar	350
Bypass pressure	Port T	bar	350 with q_{Vmax}
Priority pressure	Port A	bar	330 q _{Vmax}
Control pressure differential	$\mathbf{P} \rightarrow \mathbf{A}$	bar	12 15
Minimum pressure differential	$\mathbf{P} \rightarrow \mathbf{A}$	bar	> 10
Maximum flow	Port P	l/min	120
Rated flow	$\mathbf{P} \rightarrow \mathbf{A}$	l/min	80 (regulated)
Leakage		ml/min	< 100 (with Δp = 100 bar in P ; HLP46, ϑ_{Oil} = 40°C)
Hydraulic fluid			See table on page 6
Hydraulic fluid temperature range		°C	-40 +100 (preferably +40 +50)
Viscosity range		mm²/s	5 400 (preferably 10 100)
Maximum admissible degree of cor Cleanliness class according to ISO		ydraulic fluid	Class 20/18/15 ¹⁾
Load cycles		Million	10
Hysteresis ²⁾		%	≤ 5
Range of inversion ²⁾		%	≤ 2
Response sensitivity ²⁾		%	≤1

Notice

For applications outside these parameters, please consult us!

The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and simultaneously increases the life cycle of the components. Available filters can be found at www.boschrexroth.com/filter.

 ²⁾ Measured with analog amplifier type RA2-1/10 according to data sheet 95230 (PWM = 100 Hz).

6 **KUDSR** | Proportional flow control valve Technical data

Elektric					
Voltage type			Direct voltage		
Supply voltages ³⁾		V	12 DC	24 DC	
Maximum solenoid current		A	1.8	1.2	
Coil resistance	Cold value at 20°C	Ω	3.3	7.2	
	Max. hot value	Ω	5.8	13.0	
Duty cycle (ED)		%	see characteristic curve on pag	e 9	
Maximum coil temperature ⁴⁾		°C	150		
Protection class according to	Version "K4"		IP 65 with plug-in connector mo	ounted and locked	
VDE 0470-1	Version "C4"		IP 66 with plug-in connector mounted and locked		
(DIN EN 60529) DIN 40050-9			IP 69K with Rexroth plug-in con	nector (Material no. R901022127)	
DIN 40030-3	Version "K40"		IP 69K with plug-in connector mounted and locked		
PWM signal (recommendation)		Hz	100 (Analog amplifier type RA	. Data sheet 95230)	
Control electronics (separate or	rder)		Analog amplifier module type VT-MSPA1	Data sheet 30223	
			Plug-in proportional amplifier type VT-SSPA1	Data sheet 30116	
			Analog amplifier type RA	Data sheet 95230	
			BODAS control unit type RC	Data sheet 95200	
Design according to VDE 0580					

Notice

When establishing the electrical connection, the protective earthing conductor (PE $\frac{1}{2}$) must be connected correctly.

3) Other voltages on request

4) Due to the surface temperatures of the solenoid coils, the standards ISO 13732-1 and ISO 4413 need to be adhered to!

Hydraulic fluid

Hydraulic fluid		Classification	Suitable sealing mate	erial Standards	Data sheet
Mineral oils		HL, HLP	FKM	DIN 51524	90220
Bio-degradable	Insoluble in water	HEES	FKM	ISO 15380	90221
	Soluble in water	HEPG	FKM	ISO 15380	90221

Notice

- Further information and details on using other hydraulic fluids are available in the above data sheets or on request!
- Restrictions are possible with the technical valve data (temperature, pressure range, service life, maintenance intervals, etc.).
- The flash point of the hydraulic fluids used must be 40 K above the maximum solenoid surface temperature.
- Bio-degradable: When using biodegradable hydraulic fluids that are also zinc-solving, zinc may accumulate in the fluid.

Characteristic curves

▼ Δp -qV-characteristic curve - port P → T (A open, orifice closed)

Notice

Characteristic curves measured with HLP46, ϑ_{Oil} = 40^{±5}°C and 24 V coil.

Version "C" ($q_V P = 80 \text{ l/min}$)

 Regulated flow at port A as a function of the load pressure 3-way function (port T open to the tank)

 Regulated flow at port A as a function of the load pressure 2-way function (port T closed)

Regulated flow at port A as a function of the command value

8 KUDSR | Proportional flow control valve Characteristic curves

Version "C1" ($q_V P = 60 \text{ l/min}$)

▼ Regulated flow at port A as a function of the load pressure 3-way function (port **T** open to the tank)

Regulated flow at port A as a function of the load pressure ▼ 2-way function (port T closed)

Regulated flow at port A as a function of the command value

Version "C2" ($q_V P = 40 \text{ l/min}$)

▼ Regulated flow at port A as a function of the load pressure 3-way function (port T open to the tank)

Regulated flow at port A as a function of the load pressure 2-way function (port T closed)

Regulated flow at port A as a function of the command value

Permissible working range

Minimum terminal voltage at the coil, relative duty cycle and permissible working range depending on the ambient temperature

Version "G12"

Notice

The characteristic curves have been determined for coils with valve with medium test block size ($80 \times 80 \times 80$ mm), without flow in calm air.

Depending on the installation conditions (block size, flow, air circulation, etc.) there may be a better heat dissipation. Thus, the area of application is broadened. In individual cases, more unfavorable conditions may lead to limitations of the area of application.

= Limited valve performance

Dimensions

Dimensions [mm]

Mounting cavity

▼ R/UNF16-03-0-06; 3 main ports; thread 1 5/16-12 UN-2B

Available individual components

Item	Denomination	Material no.		
910	Nut	R900029574		
920	Seal ring for pole tube	R900002507		
999	Seal kit of the valve	R961005887		
А	Manual override "N14"	R913009058		

Coils separate order, see page 3.

Related documents

- Control electronics:
 - Analog amplifier module
 - Plug-in proportional amplifier
 - Analog amplifier
 - BODAS control unit
- Selection of the filters

Type VT-MSPA1... Type VT-SSPA1... Type RA... Type RC... Data sheet 30223 Data sheet 30116 Data sheet 95230 Data sheet 95200 www.boschrexroth.com/filter

Bosch Rexroth AG

Zum Eisengießer 97816 Lohr am Main, Germany Tel. +49 9352 18-0 info.ma@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.